rating_gp.pipeline#
Classes
Transformer for proper uncertainty propagation of log transforms |
|
Pipeline to transform (propagate) uncertainty to log space |
- class rating_gp.pipeline.LogPropagation#
Transformer for proper uncertainty propagation of log transforms
Eq: f = ln(A) -> sigma_f = sigma_A / A
- fit(A)#
Store data from A for later division in the transform.
- Parameters:
A (ndarray)
- set_fit_request(*, A: bool | None | str = '$UNCHANGED$') LogPropagation #
Configure whether metadata should be requested to be passed to the
fit
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Astr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
A
parameter infit
.
- selfobject
The updated object.
- transform(X)#
Propagate the uncertainty.
- Parameters:
X (ndarray)
- Return type:
ndarray
- class rating_gp.pipeline.LogUncertaintyPipeline#
Pipeline to transform (propagate) uncertainty to log space
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LogUncertaintyPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.