discontinuum.data_manager#
Data preprocessing utilities.
Functions
|
Decorator checks whether model has been fit. |
Classes
|
|
|
- class discontinuum.data_manager.Data(target: 'Dataset', covariates: 'Dataset', target_unc: 'Dataset' = None)#
- class discontinuum.data_manager.DataManager(target_pipeline: 'Type[Pipeline]' = <class 'discontinuum.pipeline.LogStandardPipeline'>, error_pipeline: 'Type[Pipeline]' = <class 'discontinuum.pipeline.LogErrorPipeline'>, covariate_pipelines: 'Dict[str, Pipeline]' = None)#
- property X: ArrayLike#
Convenience function for DataManager.covariates.transform
- Xnew(ds: Dataset) ArrayLike #
Convenience function for DataManager.covariates.transform
- error_pipeline#
alias of
LogErrorPipeline
- fit(target: Dataset, covariates: Dataset, target_unc: Dataset = None)#
Initialize DataManager for a given data distribution.
- Parameters:
target (Dataset) – Target data.
covariates (Dataset) – Covariate data.
target_unc (Dataset) – Target uncertainty. Default is None.
- get_dim(dim: str) int #
Get the dimension of a variable.
In other words, its column in the design matrix.
- Parameters:
dim (str) – Dimension name.
- Returns:
Dimension (column) in design matrix.
- Return type:
int
- inverse_transform_covariates(X: ArrayLike) Dataset #
Inverse transform design matrix into covariates
- target_pipeline#
alias of
LogStandardPipeline
- transform_covariates(covariates: Dataset) ArrayLike #
Transform covariates into design matrix
- property y: ArrayLike#
Convenience function for DataManager.target.transform
- y_t(y: ArrayLike) Dataset #
Convenience function for DataManager.target.untransform
- property y_unc: ArrayLike#
Convenience function for DataManager.target.transform
- discontinuum.data_manager.is_initialized(func)#
Decorator checks whether model has been fit.