discontinuum.engines.pymc#
Data transformations to improve optimization
Classes
|
|
|
- class discontinuum.engines.pymc.LatentPyMC(model_config: Dict | None = None)#
- fit(covariates, target=None)#
Fit model to data.
- Parameters:
covariates (Dataset) – Covariates for training.
target (Dataset) – Target data for training.
kwargs (dict) – Additional keyword arguments.
- class discontinuum.engines.pymc.MarginalPyMC(model_config: Dict | None = None)#
- build_model(X, y, **kwargs)#
TODO: move this to parent?
Creates an instance of pm.Model based on provided data and model_config, and attaches it to self.
The subclass method must instantiate self.model and self.gp.
- Raises:
NotImplementedError –
- fit(covariates: Dataset, target: Dataset, method: str = 'BFGS')#
Fit the model to data.
- Parameters:
covariates (Dataset) – Covariates for prediction.
target (Dataset) – Target data for prediction.
method (str, optional) – Optimization method. The default is “BFGS”.
- predict(covariates, diag=True, pred_noise=False) DataArray #
Uses the fitted model to make predictions on new data.
- predict_grid(covariate: str, coord: str = None, t_step: int = 12)#
Predict on a grid of points.
- Parameters:
covariate (str) – Covariate dimension to predict on.
coord (str, optional) – Coordinate of the covariate dimension to predict on. The default is the first coordinate of the covariate.
t_step (int, optional) – Number of grid points per step in coord units. The default is 12.
- sample(covariates, n=1000, diag=False, pred_noise=False, method='cholesky', tol=1e-06) DataArray #
Sample from the posterior distribution of the model.
- Parameters:
covariates (Dataset) – Covariates for prediction.
n (int, optional) – Number of samples to draw.
‘svd’ (method{) – Method to use for covariance matrix decomposition. The default is ‘cholesky’.
‘eigh’ – Method to use for covariance matrix decomposition. The default is ‘cholesky’.
‘cholesky’} – Method to use for covariance matrix decomposition. The default is ‘cholesky’.
optional – Method to use for covariance matrix decomposition. The default is ‘cholesky’.
tol (float, optional) – Tolerance when checking the singular values in covariance matrix. The default is 1e-6.