discontinuum.pipeline#
Functions
Convert a timeseries to decimal year. |
|
Convert a decimal year to a datetime. |
Classes
Base class for transformers. |
|
|
Clip a variable. |
|
|
Pipeline to transform error |
|
Log-transform a variable. |
|
Square a variable. |
|
Pipeline to transform error |
|
|
Rescale a variable to have a mean of 0 and a standard deviation of 1. |
Convert a datetime to decimal year. |
|
|
Rescale a variable to have a minimum of 0 and a maximum of 1. |
- class discontinuum.pipeline.BaseTransformer#
Base class for transformers.
- class discontinuum.pipeline.ClipTransformer(min: float = None, max: float = None)#
Clip a variable.
- class discontinuum.pipeline.ErrorPipeline(steps, *, transform_input=None, memory=None, verbose=False)#
- abstractmethod ci(mean, se, ci=0.95)#
Calculate confidence interval for a variable.
- Parameters:
mean (float) – Mean of the variable.
se (float) – Standard error of the variable.
ci (float) – Confidence level.
- Returns:
lower, upper – Lower and upper bound of the confidence interval.
- Return type:
Tuple[float, float]
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') ErrorPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.LogErrorPipeline#
Pipeline to transform error
inverse_transform converts variance (in log space) to a GSE
- ci(mean, se, ci=0.95)#
Calculate confidence interval for a log-transformed variable.
- Parameters:
mean (float) – Mean of the variable.
se (float) – Standard error of the variable.
ci (float) – Confidence level.
- Returns:
lower, upper – Lower and upper bound of the confidence interval.
- Return type:
Tuple[float, float]
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LogErrorPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.LogStandardPipeline#
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LogStandardPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.LogTransformer#
Log-transform a variable.
- class discontinuum.pipeline.MetadataManager#
- fit(X, y=None)#
Store metadata from a xarray DataArray.
- Parameters:
X (DataArray)
y (None) – Ignored.
- inverse_transform(X)#
Add xarray metadata to a numpy array.
- Parameters:
X (Numpy array)
- Return type:
DataArray
- transform(X)#
Extract values (numpy array) from xarray DataArray
- Parameters:
X (DataArray)
- Return type:
Numpy array
- class discontinuum.pipeline.NoOpPipeline#
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') NoOpPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.SquareTransformer#
Square a variable.
- class discontinuum.pipeline.StandardErrorPipeline#
Pipeline to transform error
inverse_transform converts variance to SE.
- ci(mean, se, ci=0.95)#
Calculate confidence interval for a standard variable.
- Parameters:
mean (float) – Mean of the variable.
se (float) – Standard error of the variable.
ci (float) – Confidence level.
- Returns:
lower, upper – Lower and upper bound of the confidence interval.
- Return type:
Tuple[float, float]
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') StandardErrorPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.StandardPipeline#
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') StandardPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.StandardScaler(*, with_mean=True, with_std=True)#
Rescale a variable to have a mean of 0 and a standard deviation of 1.
Reimplemens the sklearn.preprocessing.StandardScaler but removes the requirement of having 2D arrays.
- class discontinuum.pipeline.TimePipeline#
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') TimePipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.TimeTransformer#
Convert a datetime to decimal year.
- class discontinuum.pipeline.UnitPipeline#
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') UnitPipeline #
Configure whether metadata should be requested to be passed to the
score
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- selfobject
The updated object.
- class discontinuum.pipeline.UnitScaler(zero_value=0)#
Rescale a variable to have a minimum of 0 and a maximum of 1.
- discontinuum.pipeline.datetime_to_decimal_year(x: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str]) Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] #
Convert a timeseries to decimal year.
- Parameters:
x (DataArray) – Timeseries to convert.
- Returns:
Decimal year array.
- Return type:
ArrayLike
- discontinuum.pipeline.decimal_year_to_datetime(x: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str]) Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str] #
Convert a decimal year to a datetime.
- Parameters:
x (ArrayLike) – Decimal year to convert.
- Returns:
Datetime array.
- Return type:
ArrayLike