loadest_gp#

class loadest_gp.LoadestGPMarginalGPyTorch(model_config: ModelConfig = ModelConfig(transform='log'))#

Gaussian Process implementation of the LOAD ESTimation (LOADEST) model

This model currrently uses the marginal likelihood implementation, which is fast but does not account for censored data. Censored data require a slower latent variable implementation.

build_model(X, y) ExactGP#

Build marginal likelihood version of LoadestGP

class loadest_gp.LoadestGPMarginalPyMC(model_config: ModelConfig = ModelConfig(transform='log'))#

Gaussian Process implementation of the LOAD ESTimation (LOADEST) model

This model currrently uses the marginal likelihood implementation, which is fast but does not account for censored data. Censored data require a slower latent variable implementation.

build_model(X, y) Model#

Build marginal likelihood version of LoadestGP

Modules

models

plot

Plotting functions

providers

utils